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Toward a Procedural Theory of Judgment

Prologue

A few years ago I spent several months trying to interest a new graduate

student in research on judgment, but I could not seem to arouse any enthusiasm.

Finally, in desperation, I sent bin off to the laboratory to run some subjects

on a pilot project. A few weeks later he was back with a sheaf of computer

output. "I want to show you something interesting," he said. He pointed to

a sheet on which a single subject's data were laid out as a row-by-column

array with the responses from the several replications listed one after another

within the cells. "Look here," he said, "everytine you give the subject the

same stimulus he gives almost the identical answer. And almost all C~ie subjects

do the same."

This student's revelation had, for me, a bittersweet quality, for he had

"discovered" what all of us who have studied judgment seriously take as given:

human beings, in making quantitative judgments about complex stimuli, do so

in a manner that is systematic and replicable. Furthermore, their judgments

often reveal algebraic patterns that suggest the operation of some internal

mechanism for "computing" averages, products, relative ratios and so forth.

Subjects, however, are not conscious of these computations nor are they aware

of the algebraic form of their judgments. Where do the judgments come from?

What psychological processes give rise to this algebra-less algebra? These

are questions whose interest has eluded not only that particular graduate

student, but also a number of professional researchers who have perfunctorily

critized algebraic judgment models for their "as if" status and then roved on

to study other topics.

Strictly speaking, the present paper is a final report on a research

project that has attempted to show why subjects in a particular task -- the

Bayesian inference task -- produce judgments that are more like averages than

like inferences. The project, however, was based on a general procedural

theory of judgment that applies not only to averaging, but to other algebraic

forms as well. Thus, the broader purpose of the present report is to lay out

the rudiments of this procedural theory more generally than has been possible

in the previously published experimental reports (Lopes, 1981, l?82a,b).
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The report will he divided into three sections. First, I _ll describe

the procedural theory and contrast it with the implicit characterization of

process that might be drawn from algebraic models of judgment. Second, I will

describe three common forms of judgment (averaging rules, relative ratio rules,

and multiplying rules) and will discuss the factors that predispose subjects to

use these rules for particular tasks. Third and finally, I uill show how

several different phenomena of judgment (primacy and recency effects, initial

impression effects, differential weighting effects, and violations of additivity)

can be interpreted within the procedural theory.

A Procedural Theory of Judgment

In the present view, judgments are produced via a serial adjustment process

in which an initial or "anchor" quantity is "adjusted" one or more times in

accordance with other available information. The idea that judgment is a pro-

cess of serially adjusting an internal quantity was first suggested by Slovic

(1967) under the name "polarization and adjustment" and later named "anchoring

and adjustment" by Tversky and Kahneman (1974). More recently, the process has

been hypothesized to account for averaging-like results in Bayesian inference

(Lopes, 1981, 1982a,b; Wallsten, 1976b),diagnotic inference (Einhorn & Hogarth,

1982), and similarity judgment (Lopes & Johnson, 1982; Lopes & Oden, 1980).

The present paper extends these earlier treatments by showing how serial adjust-

ment processes mediate the algebraic form of the judgments produced.

A flow diagram of the proposed process is given in Figure 1. The process

is described as comprising a set of operations in which information is scanned,

items are selected for processing, scale values are assessed, and adjustments

are made (at least after the first step) to an interim quantity that summarizes

the results from already-processed information. These various operations are

described in detail below.

Scanning. In the scanning operation the judge assesses what information

has been presented for judgment. The details of this stage depend, of course,

on how the information is presented to the judge. Three cases can be distin-

guished. In sequential presentation the items of information are presented one

at a time, with or without an overt response from the judge after each item.

Obviously, the scanning stage is rudimentary in sequential presentation since

at any moment there is only one item to scan.
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In undifferentiated si~multaneou retation several items of informtion

are presented 'it the same t ime and there Is no aprliori reason to suppose that

Inv particular item is more important than any other. In such a case, if the

number of items presented issmall, scanning will probably include llavailable

items, with the order of scanning determined by the physical format of the

stimulus; i.e., if the information is presented as a list, scanning will probably

proceed from top to bottom. If the number of items of information is large,

however, scanning may terminate before all. availahle items have I)e'n scanned.

In differentiated simultaneouis_ presentation several items of information

are presented at once but items differ from one another in terms of the kind of

information they contain or in terms of their relevance for the judgment task.

One example might be an application for graduate school containing an applicant' s

CPA, GRE scores, undergraduate college, letters of reference, personal history,

and reasons for wanting to pursue advanced study. Another example might be an

advertisement for an apartment giving rent, locale, number of rooms, and so forth.

With complicated materials such as these the scanning process will undoubtedly

reflect the judge's perception of the relative importance or usefulness of the

different types of information. Some items may reliably be scanned before other

items (e.g., CPA and CRE scores may be scanned first in a graduate school appli-

cation) and some items may not be scanned at all, or at least not on the initial

pass (e.g., hobbies or reasons for wanting to attend graduate school).

It is assumed that the primary function of the scanning operation is to

orient the judge to the information available in the stimulus. Although some

preliminary evaluation and integration of the stimulus material may occur during

the stage, this would give only a rough impression of the value of the stimulus.

Such a rough impression would ordinarily not be the final response, since that

would be developed as the result of later and, usually, more deliberate passes

through the stimulus information.

There may, of course, be exceptions to this rule. For example, in scanning

applications for graduate school, a judge may come across oine that is deficient

in every respect. If a very crude scale of judgment is being used (e.g.,

assigning the applicant to one of five categories) the judge may assign the

application to the lowest category without further processing. If, however, the

judge is using a more continuous scale of judgment (e.g., rating the applicant's

probability of success in graduate school) and if, as is usually the case in

experimental tasks, the judge has been cautioned against making hasty "end



responses," then further processing would be required in order to position the

stimulus reliably on the judgment scale.

Anchoring. After the stimulus information has been scanned, the judge

chooses some item of information to serve as a quantitative "anchor" (Tversky

& Kahneman, 1974) for the judgment process. If the information is presented

sequentially, of course, only one item is available at a tine so the judge must

use the first item presented as the anchor. If the information is presented

simultaneously, the judge has several items to choose from. For items that are

relatively undifferentiated (e.g., a list of trait adjectives in an impression

formation task) the judge may simply anchor on whatever adjective happens to

be on top of the list. For items that are differentiated, however, the judge

will ordinarily select an anchor on the basis of the a priori importance of

the information type. For instance, GRE scores or GPA night he chosen to anchor

judgments of graduate school applicants. Alternatively, an item night be chosen

because of the unusual diagnosticity of its particular information. For example,

prior work experience would probably not be considered very importan~t for judging

graduate school applicants. But experience as a lion tamer night be considered

interesting enough to use as an anchor for someone applying for study in animal

behavior (or risky decision making).

As will be seen, the anchoring operation can have important consequences

for the judgment process. As Tversky and Kahmeman (1974) pointed out, adjustments

to the anchor quantity are often "insufficient" in the sense that final judgments

often lie nearer to the anchor than they would if the process were independent of

which stimulus served as the anchor. Thus, anchoring and adjustment can lead to

judgmental primacy which, in turn, can affect the algebraic pattern of the judg-

ments produced. These anchoring effects will be discussed more fully in the sec-

tions on primacy/recency and on differential weighting.

Valuation. Once an anchor stimulus has been chosen, it must be evaluated

relative to the scale of judgment. In some cases this valuation operatlion nay

yield a quantity that serves directly as the anchor value. For example, in a

Bayesian inference task, subjects may simply anchor their judgment at the scale

positio~n that is proportional to the number of "target" items in the initial

sample (Lopes, 1981). In other cases, however, the initial judgment may be less

extreme than the scale value of the anchor stimulus. In these cases the initial

judgmeru. appears to be a compromise between the value of the stimulus information

and some internal, presumably more neutral "initial impression" (Anderson, 1967).
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As can be seen from the figure, stimulus valuation occurs not only in the

course of anchoring the judgment, but also in subsequent stages as other stimulus

information is brought into the judgment. This valuation process can be simple

or complex depending on the nature of the judgment task. In some cases, the

stimulus information seems to "contain" the pertinent value information fairly

directly. This is seen most easily in the impression formation task in which

the given personality trait adjectives seem to contain the required "likeableness"

values as part of their meaning. In other cases, however, inference must be done

to determine the scale value of the stimulus inf~rmation. This would be true,

for example, in a task in which subjects were asked to use aptitude information

to judge the proficiency of people in various occupations (e.g., Anderson & Lopes,

1974).

In many judgment tasks the valuation process is complete when the scale

value of the currently attended stimulus has been obtained. In some situations,

however, the obtained scale value is processed further by comparing it with some

expectancy or with the values of previous stimuli. For example, Lopes (1972)

showed how some striking contrast effects obtained by Jones, Worchel, Goethals,

and Grumet (1971) in an attitude attribution task could be explained without

recourse to notions of stimulus interaction. It was proposed that subjects

evaluated the content of an essay purportedly written by the target person against

the sort of essay such a target person might have been expected to write. The

discrepancy between the actual and the obtained essay was then integrated into the

judgment along with the value of the essay itself.

In a similar vein, some subjects in a goal-setting task (Lopes, 1976) seemed

to set their goal for the next trial in a maze-running problem in accordance

both with their scores from the previous few trials and with the discrepancy

between their most recent score and their next-most-recent score. For these

subjects, it was as though they evaluated their performance on each trial not only

In terms of the score itself, but also in terms of whether or not they showed

improvement on the task.

Adjustment. Once anchoring has been accomplished, the judge must decide

whether there are still important items unprocessed. If so, the process essen-

tially reiterates, with the judge choosing which of the remaining items to

consider next. As can be seen in the figure, the considerations at this point

are exactly what they were at the time of choosing the anchor: if one of the

remaining items is clearly more important than the others, the subject chooses
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it, otherwise an item is chosen arbitrarily and the scale value of the chosen

item is then determined.

The next step in the judgment process is adjustment of the initial value

according to the new information. It is this step that is most crucial in deter-

nining whether the algebraic form of the judgment is an average, product, rela-

tive ratio, or other combination rule. Detailed discussion of how the adjustment

process is related to the algebraic form of the judgment will be deferrec to the

section on algebraic rules. For the moment it suffices to say that the adjustment

process has two important subprocesses: choice of the direction in which adjust-

ment will occur and choice of the magnitude of the adjustment. These subprocesses

will reflect, in large part, the judge's internal representation of the judgment

task and the judgment scale.

The Psychological Nature of Algebraic Processes

Evidence supporting the algebraic nature of human judgments has been accumu-

lating for more than 20 yeilrs (cf. Anderson, 1981). However, as Graesser and

Anderson (1974, p. 697) pointed out, establishing an algebraic model for judgment

data is "only a first step in the analysis of the judgment process." Beyond

this lies a clear need to reach an understanding of the cognitive mechanisms that

are involved when people produce averages, products, or other algebraic forms.

Algebraic models are ordinarily expressed in what 1 will call declarative

form. By this I mean that all the variables that enter the judgment are expressed

along with the algebraic rule that defines the relationship among these variables

in the judgment. No indication is given, however, of the procedures through

which the computation is performed. Thus, the model applies to the final output

of the judgment process rather than to the stages through which the judgment is

generated.

For illustration, consider the forms in which averaging models are usually

expressed. Equation I gives the averaging rule in absolute weight form:

N
S(wi si)

R N 1_ (1)

wi

In this form, the response given to N stimuli, %., is seen as the quotient of two

sums: in the numerator, the sum of the various stimulus scale values (s ) each



multiplied by their respective weights (w.), and in the denominator, the sum

of the weights. (For simplicity I have ignored the possibility of an initial

impression. If therc were one, it would be assigned weight w 0 and scale value

sand the summation would run from i -0 to N.)

Equation 2 gives the same averaging rule in relative weight form:

N 1 -
RN I~ s(2)

RN ~ N

This expression differs from the absolute weight form primarily in that it suggests

that the various scale values are each multiplied not by their absolute weights,

but by their relative weights. These, in turn, are simply ratios of the individual

absolute weights to the total absolute weight. (Sometimes the relative weight

form of the averaging rule is written without showing the normalization of the

absolute weights, i.e., the division by the sum of the weights. This is done by

noting outside the equation that the sum of the weights is 1.)

Equations 1 and 2 are intended to describe the output of the judgment process,

but not the process itself. In particular, the sequence of operations that one .
would use to literally instantiate computation of an average via either of these

equations is not intended as a description of the sequence of operations that

judges perform during the judgment process. Instead, the equations are intended

to show (a) what. quantities must be supposed to be functional _'n the judge's

representation of the stimulus information and (b) how these quantities are related

to one another mathematically in the description of the final judgment.

A major assumption of the present procedural theory is that the judgment pro-

cess operates serially by producing "running" values as stimuli are sequentially

selected and integrated into the judgment. Equation 3 shows how an averaging

model can be written to emphasize this serial integration:

n- 1

wX

Rn n (s )+ ! (R (3)
n n n n n-

In the equation, R is the response (either internal or external) after the first
n

n stimuli have been integrated. It is shown as a weighted average of the scale

value of the new stimulus item (s )and the old response, i.e., the response value
n

after n-1 stimuli.
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Equaition 3 captures the serial aspect of judgment, but it does not convey

the sense that the old response is transformed to a new response by an adjustment

process that increases or decreases the value of the old judgment in accord with

the relationship between the value of the old judgment and the value of the new

information. Fquation 3 can he rewritten, however, to a cha nge form that captures

the notion of adjustment fairly well:

R n w n(s n-R nl) + Rn

In this form, the variable w nstands for the relative weight of the information

currently being integrated. Note that the new judgment, Rn is simply the old

judgment plus or minus some proportion of the difference between the value of the

new information and the value of the old response.

Equation 4 comes much closer than the previous equations to capturing in

algebraic terms the various psychological operations that are hypothesized to

operate when judges produce averages. There are, however, certain respects in

which even this equation nisrepresents important psychological features of the

,judgment process. To begin with, Equation 4 is an equation, which is to say that

it shows how certain numerical (i.e., digital) quantities are to be operated on

arithmetically to produce other numerical quantities. In contrast, the procedural

theory outlined above need not have its various values instantiated numerically

(although they could be) . Likewise, there would need be no literal subtraction of

R 11from s, no literal multiplication of the difference by w n and no literal

ad(!it ion of the quant ity to R ni*

Inl thc secondl place, Equation 4 does not reveal how the characteristics of

the various stimuli to be integrated influence the order in which they are pro-

cessed or how, in turn, the order of processing affects the algebraic form of the

judgment. This is particularly true with respect to the important ordering role

played by weights in the procedural theory. Information integration theory has

traditionally emphasized the theoretical necessity of construing stimuli in inte-

gration tasks to have both weights and scale values (cf. Anderson, 1981, p. 334-

355), but it has not specified the different functions that weights and scale

values play in judgment except to point out that weights measure, more or less,

the salience or amount of information in a stimulus whereas scale values measure

the position of a stimulus on a particular scale of judgment. The present proce-

dural theory amplifies this important distinction between weights and scale

values by showing their functional differences in the judgment process.
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Finally, Equation 4 does not specif, how the internal judgment is related t,

the external response. Traditionally, algebraic theories have treated the inte-

gration stage (in which the algebraic mechanism operates) as quite separate from

the response stag, in which, thL ludge interprets his internal judgment in the

explicit terms required by the experiment. Anderson (cf. 1981, p. 4-5), for exam-

ple, refers to a 'psychomotor law" in which a response function operates to map

an implicit response into an observable response. This separatit'n -f internal

from external response, in turn, has led some algebraic theorists to distrust the

surface patterns of judgment data and to suppose that the internal algebraic pro-

cess may 1,e quite different from that suggested by the data (cf. Birnbaum, in press).

In the prevent view, internal and external response processes are brought closer

together. Although it is obvious that thoughts differ fundamentally from their

observable manifestations in judgment tasks (e.g., marks made on paper, movements

made on a potentiometer, etc.), it will be seen that there is often a close

connection between internal or implicit responses and some of the more superficial

characteristics of the external response scale.

Adjustment Processes and Algebraic Form

In this section I will show how adjustment processes can be related to three

algebraic patterns (averaging rules, relative ratio rules, and multiplying rules)

that are commonly observed in judgment data. Before proceeding, however, it is

useful to point out some psychologically important differences between the sort of

analogical procedures that are assumed by the present model and more ordinary

numerical procedures for computing algebraic results.

For sake of exposition, suppose that a subject is asked to average 73 and 42.

One way to proceed would be to add 73 and 42 to yield 115 and then divide the

result by 2 to yield 57.5. Numerical processes such as this are characterized by

three properties: (1) The numerals that are manipulated in the aritunetic are

symbols that have been assigned to quantities arbitrarily. (2) The operations

that are applied to the numerals are rewrite rules that specify the mapping between

the ordered strings of numerals in the problem statement and the ordered string

of numerals in the answer. For example, in adding 73 and 42, we know that the "Y'

and the "2' in the ones places of the two addends combirTe to yield a "5" in the

ones place of the answer. (3) Quantitative interpretation of the answer string

requires information that Is not in the string itself. That is, since the answer



string does not represent quantity directly, the interpreter or decoder of the

string must apply outside knowledge about the mapping between strings of numerals

and the quantitifes they represent.

Another way to average the numbers would be analogically. This could be done,

for example, by locating the value 73 on some quantitative continuum, then finding

the location of 42 on the same continuum, and finally moving halfway between 73

and 42. Note that none of these operations would need involve numerals since

.inlogcalprocesses use quantit ies (e.g., spatijal position, intensity, etc.)

directly to represent other quantities (e.g., the average of 73 and 42). For exam-

ple, if the continuum were printed as at line on a piece of paper, the scale posi-

tions corresponding to 73 and 42 could be located and folded to meet one another.

The position of the fold would then mark the answer of 57.5.

There are several good reasons to doubt that the cognitive processes that

mediate algclbraic judgment are numerical . The first is that for many judgment

tasks, neither the stimuli nor the responses may ever be represented numerically,

aIS would be necessary for numerical computation. In impression formation, for

example, subjects are typically asked to read a set of personality trait adjectives

and then rate (often on an unmarked continuous scale) the likeableness of a person

having the traits. In verbal tasks such as these it is extremely unlikely that

subjects would recode the stimulus information into numerical form and then operate

on that. Instead, it appears that human judgment processes can operate as readily

on quantities that are defined verbally or vaguely as it can on quantities that

happen to he expressed numerically.

A second reason is that judgmental difficulty does not seem to increase as

quickly as a function of problem size as would be expected if the judgment proce's

involved the sorts of symbol manipulation that occur in numerical computation.

For example, Shanteau (1974) had subjects rate the worth of single gambles (e.g.,

fairly likely to win sandals) and double gambles (egfairly likely to win

sandals and unlikely to win bicycle). Even though the double gambles were obvious-

ly more complex than the single gambles, there was no tendency for the single

gambles to produce "better" data. This result contrasts strongly with results

from studies of mental arithmetic (e.g., Dansereau & Gregg, 1968; Hitch, 1978) in

which subjects perform numerical computations without pencil and paper. In these

tasks, both errors and latency to solution tend -o increase as problem difficulty

increases.

A third and final reason is that it is rare for subjects in judgment tasks
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to know intel ectually that their Judgments conform to an algebraic rule. S ine

numerica I computat ion requ ires expl iciL and rule-based manipulat ion of symbols,

it seems exceedingly unI ikely that subj ects could he using even a rtd imeItar, form

of numerical computation without having at least some awareness of the basis for

their judgments.

Analogical p rocesses, on the other hand, can provide a pl ausibIe accOunt of

how algebraic judgments are produced. As will be detailed in the sections immedi-

ately following, they can operate via a variety of serial adjustment procedrres

to produce averages, relative ratios, products, and other algebraic results from

stimulus quantities that are expressed either exactly or inexactly. In addition,

they are computationally efficient, putting few demands on short term memory and

allowing problems of varying size to be computed iteratively simply by recycling

through the processes of stimulus selection, valuation, and adjustment until all

(or sufficient) stimulus information has been integrated.

Averaging

Of the several algebraic models that have been proposed to describe human

judgment processes, the model that is empirically most pervasive and theoretically

best understood is averaging. Subjects appear to average in a variety of judgment

situations ranging from number averaging in which averaging is the requested

response to impression formation in which averaging is neither demanded nor dis-

allowed logically to Bayesian inference in which averaging deviates both quanti-

tatively and qualitatively from what is normative.

The most commonly obtained form of averaging is what is called constant

weighted averaging. The term "constant weighting" refers to the fact that, for

composite stimuli generated by factorial combination of stimulus elements,

the weights associated with all stimuli within a given factor are equal. Weights

can, however, vary between factors.

In constructing a procedural theory for constant weighted cveraring, two

important empirical findings must be explained. The first is the basic averaging

result which, simply put, refers to the fact that averaging one quantity with

another always results in a new quantity that lies between the two original

quantities. Thus, if neutral information is averaged with information of high

value, the neutral information lowersthe average. On the other hand, if the same

neutral information is averaged with information of low value it raises the

average. The second finding is the parallelism result which refers to the

fact that if judgments generated by a constant weighted averaging process are

plotted as a factorial graph, parallelism will obtain between the various row.;.
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Both averaging and parallelism are easily explained within the proposed

serial adjustment theory. Sticking for the moment to the number averaging

example described above, suppose that a subject is asked to average the follow-

ing set of numbers:

73

42

63

67

The first step would be to anchor the judgment at 73 (since it is first on the

list) and then adjust downward to a position lying between 73 and 42. This

between-ness property of the interim response would, by definition, constitute

a generalized averaging result. If in addition the magnitude of the adjustment

was one-half the distance between 73 and 42 (i.e., 57.5), the obtained average

would be the simple arithmetic average of the two quantities and, since arithmetic

averaging constitutes a special case of constant weighted averaging, parallelism

would also hold in a factorially-defined Pet of such stimulus pairs.

The next step in the averaging procedure would be adjustment of the interim

response to account for the value 63. For arithmetic averaging, the magnitude

of this adjustment would have to be one-third the distance between 57.5 and 63

giving a new interim response of 59.33. The final adjustment step would follow

the same pattern with an upward adjustment one-fourth the distance between 59.33

and 67. Note that for arithmetic averaging the adjustment rule is, for the nth

stimulus in the average, to adjust 1/n of the distance between the scale value

of the nth stimulus and the interim response to the first n-l stimuli.

Arithmetic averaging is special in the sense that even when it is performed

analogically, there still seems to be a strong numerical base to the process

both in the representation of the stimulus values and in the fractional specifica-

tion of the adjustment constants. These numerical overtones are, however, irre-

levant in the more general definition of the averaging process. Constant weighted

averaging requires only two things: first, that the adjustment process, however

it occurs, yields a value that lies between the value of the stimulus being inte-

grated and the value of the "old" response; and second, that the adjustment

constant for a particular serial position be independent of the content of the

stimulus information at that serial position.

For illustration, Figure 2 shows how a person might integrate a set of

personality traits in an impression formation task without resorting to numerical
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processes. The stimulus set is shown at the top of the figure. The central

portion of the figure shows (a) in the left column, fictional thoughts occurring

(luring judgment, (b) in the middle colutmn, a designation of the current judgment

stage in terms of the procedural model of Figure 1, and (c) in the right column,

a verbal expression of the running impression. At the bottom of the figure is

given a hypothesized evaluative continuum with occasional verbal labels. This

continuum I.- intended to represent a possible internal schema for evaluative terms.

It Is not intended to be taken literally as a spatial scale, nor is it intended

that the verbal labels shown exhaust the verbal descriptions that a subject could

give of positions on the continuum.

In Step 1, the judge scans the stimulus set. Since the items are fairly

undifferentiated, the judge opts (in Step 2) for processing them in the order

listed. In Steps 3 and 4, then, the first item is evaluated and used to anchor

the judgment. Note that Ln this example, the judge began with a neutral initial

impression. Thus, the impression value generatec at Step 4 is somewhat less

extreme than the value of the anchor adjective taken alone. In Step 5, the

subject selects the next item for processing and, in Step 6, evaluates it.

Step 7 represents the adjustment of the current impression toward the new Stimulus

item. Note that for constant weighted averaging to hold, the phrase "quite a bit"

must be interpreted as a relational operator referring to a constant proportion

of the difference between the new and the old value. In Step 8, the judge selects

the next (and final) stimulus item. This is then evaluated in Step 9 and adjusted

for in Step 10 to produce a final impression that is then mapped by the subjectI

onto whatever overt response scale has been provided. Note that in this example

I have shown the second adjustment (Step 9) to involve a smafller proportion of

the difference between the old impression and the new item than was shown in St~p 7.

For anything approaching arithmetic averaging to hold, there would neeOd to be

successively smaller adjustment constants at eachi step with values of about a half,

a third, and so forth. Ordinarily, however, averaging tasks display primacy,

which implies adjustment constants that are even smaller than this. (More will be

said about primacy and recency effects in a later section of the paper.)

As the example illustrates, averaging procedures seem Intuitive and natural

for the impression formation task, as they would for many other Integration ta,iks.

But averaging results are also found in some tasks wherc ave:-aging seems irrational.

A case in point is the Bayesian inference task in which subjects make judgments

concerning the relative probability of two hypotheses (IIl and 112) based on one or

more data samples (Dl, D2, etc.).
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Accurding to Bayes' theorem, the probability of HI given data sample DI is

as follows:

pO1lII) p(DlH1)p(Hl) (5)
P( ) DIH)p(HI) + p(Dl'H2)p(H2)

where p(Ill) and p(H2) are the prior probabilities of the two hypotheses and

p(HIlDl) is the posterior probability of Hi. If a second sample is introduced,

the process simply reiterates with the values for p(HlJDl) and p(H21DI)

replacing the old prior probabilities. That is,

= p(D2!Hl)p(HI!Dl) (6)

p(Hl[Dl&D2) p(D2JHl)p(HlfDl) + p(D21H2)p(H21DI)

Looked at in terms of adjustment processes, Bayes' theorem constrains the

direction in which adjustments can occur. This is easiest to see by simplifying

and then rewriting Equations 5 and 6. First, let p(DlIHI)p(Hl) be replaced by

the value a and p(DlIH2)p(H2) by the value b:

p(HlDl) = a (7)
a+b

Note that the equation reveals a simple relative ratio form. Now, we divide both

numerator and denominator by a to give:

p(HIIDI) = b (8)
l+b/a

In the same way, p(H2!DI) = b/(a+b) = I/(l+a/b).

Consider how a new sample, D2, would affect the outcome. Let a' stand for

p(D21HI) and b' stand for p(D21H2). Substituting into Equation 6 we obtain

a' a

p(1IlJDl&D2) = a+b a, (9)
a+ , b aa'+bb'

a+b +b

This can then be simplified as follows:

l+(b/a) (b'/a') (10)
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Focusing, I-r illustration, on Ill, not ice that if sample 1D2 favors Ill, i.e.,

b'a' 1, then the value of p(HlI1DI&D2) must exceed the value of p(HlJDl)

since the denominator term becomes smaller. Thus, anytime a new sample favors

Hi, adjustments must be toward increased support for I. Under averaging,

however, this directional constraint need not hold. In particular, if the current

degree of Support for I is more extreme than the degree of support offered by

the new evidence, averaging-type adjustment will operate to lower the degree of

support for Hi1.

A considerable body of evidence supports the notion that subjects in

Bayesian inference tasks produce data that are more like averages than they are

like the relative ratios demanded by the normative theory (Beach, Wise, & Barclay,

1970; Marks & Clarkson, 1972, 1973; Shanteau, 1970, 1972). In addition, the

current research program has demonstrated quite clearly that these averaging-like

results can actually involve directionally inappropriate adjustments (Lopes,

1981, 1982a) . In other words, subjects who are given new data that support the

currently held hypothesis more than the alternative sometimes actually lower their

confidence in the supported hypothesis and increase their confidence in the alter-

native.

If subjects always produced averages and never produced relative ratios,

there would be little problem. one could suippose that the psychological pressure

to make adjustments toward the scale value of the new information was simply so

great that logical factors such as those influencing normative theories could not

compete. But subjects sometimes do make ratio-like judgments even in tasks that

are formally quite similar to Bayesian taskE,. The question then arises as to

the determinants of averaging-like and ratio-like processing. This is an important

question, but it is best deferred until relative ratio rules have been discussed.

Relative Ratios

Ratio tasks are tasks of relative judgment. In the simplest case, there are

two polar alternatives and a set of stimuli. The judge's task is to locate the

values of the various stimuli relative to the alternatives. In many experimental

tasks, the stimuli are generated by a factorial combination of features that vary

in the degree to which they support the two alternatives.

As noted above, the Bayesian inference task is a relative ratio task in which

the "features" that are combined factorially are probabilities associated with

different samples. That is, if we look, for example, at the three terms comprising
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Equation 5, we see that each of them is separately the joint probability of the

data and one or the other of the two hypotheses.

Relative ratio rules need not, however, involve probabilities. Oden (1979),

for example, has used a relative ratio rule to model the degree to which people

judge various character-like stimuli to be instances of one letter or another.

His model is a fuzzy logical model for integrating the continuous truth values of

various semantic propositions describing the candidate patterns.

Figure 3 shows both the data and the stimuli from Oden's experiment: Note

that each stimulus matrix (upper panel) involves two features that vary continuously

across a factor. For example, in the T/F matrix at the left, the row feature is

the degree to which the left-hand portion of the T-har is present or absent and

the column feature is the degree to which the middle F-bar is present or absent.

In the matrix, perfect examples of F and T are located in the upper right and lower

left cells, respectively. The other stimuli are, to varying degrees, less than

perfect and the subject's task is to say, for each stimulus, the degree to which

it is a T or an F.

Oden's model can be paraphrased as follows: if we suppose that the subject

is asked to rate the degree to which a given stimulus is a T or an F (i.e., the

stimulus "T" would be rated I and the stimulus "F" would be rated 0), then,

T-ness of feature I

Relative T-ness of stimulus T-esofF-ness of feature 1T-ness of feature I F-ness of feature 2 (11)+
F-ness of feature 1 T-ness of feature 2

A relative ratio rule of this sort is expected, for stimuli such as Oden used, to

produce data that have a "barrel-shape" when they are graphed. As can be seen in

the lower panels of Figure 3, Oden's data do, indeed, have such a barrel-shape

for all three stimulus matrices and, thus, verify that people have access to ratio-

like judgment processes.

The upper panel of Figure 4, however, shows the data pattern that is produced

by naive judges in the Bayesian task. These particular data were taken from an

experiment in which subjects had to judge the probability that a machine was in

need of repair. The stimuli were pairs of estimates of the rate at which the

machine produced rejected parts (Lopes, 198 1a). As is evident graphically, these

data are essentially parallel -- indicative of an averaging process -- rather than

barrel-shaped as Bayes' theorem requires.

i
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If people can produce relative ratip, why don't they do so in the Bayesian

task? The answer seems to lie in the relation between the procedures underlying

ratio-like responding and the subject's representation of the stimulus informa-

tion and the response scale. There appear to be two fundamental differences

between relative ratio procedures and averaging procedures. The first of these

concerns the direction in which adjustments are made when both new and old infor-

maion favor the same hypothesis. As was discussed above, adjustments in rela-

tive ratio processes must always be made in the direction of the hypothesis that

is favored by the current information. In contrast, adjustments in averaging

can be made either towards or away from the hypothesis favored by the current

information depending on whether the current information is more or less extreme

than the value being adjusted.

The major purpose of the Bayesian inference experiments described above was

to find out whether naive subjects could be made to be better Bayesians by teach-

ing them better adjustment strategies. In the first experiment, two groups of

subjects were given sample information about the rate of rejected parts in a

sequential-presentation format and were asked to judge the probability that the

machine that produced the samples was broken. Half the subjects were given no

further instructions; these were the control group. The other subjects were

given instruction concerning the prevalence of directional adjustment errors and

were taught the proper direction of adjustment for pairs in which a "weak"

sample favoring a given hypothesis follows a "strong" sample favoring the same

hypothesis. The results indicated that the instructions did, indeed, greatly

reduce the occurrence of directional errors, but the data produced were still

much more like averages than like relative ratios.

The largest discrepancies appeared to involve stimulus pairs in which one

sample favored one hypothesis and the other sample favored the other hypothesis.

For these pairs, subjects appeared to give the samples within serial position

relatively equal weight regardless of whether they were extreme or not. In other

words, the subjects were behaving as required by the parallelism principle

described in the section on constant weighted averaging. Bayesian inference,

on the other hand, requires a "differential weighting" strategy: Samples that

are extreme in one direction or another are more diagnostic than nonextreme

samples and must be accorded higher weight in the final judgment.

Experiment 2 (the results of which are shown in Figure 4) attempted to teach

subjects a procedure that would facilitate differential weighting in a simultaneous-
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presentat ion task. Basically, this new procedure retained tht, instructions con-

cerning the proper direction of adjustment and added only the idea that the

subject should always anchor the judgment at the value given by the more extrome

stimulus and then adjust for the value of the less extreme stimulus. The reason-

ing was that, since primacy is a commonly observed finding in judgment, process-

ing stimuli in order of importance might be one way of producing differential

weight ing.

As can be seen in the lower panel of Figure 4, the training procedure was

quite effective. In contrast to a group of control subjects (top panel), the

trained subjects produced data that are clearly more barrel-shaped. In fact,

these data were very close to the optimal values computed from Bayes' theorem.

It appears, then, that whether or not subjects produce ratio-like data or

averaging-like data involves both their intuitions about the direction in which

judgments should be made and their intuitions about the magnitude of the adjust-

ment constants (or, equivalently, about the order in which stimulus features

should be processed). To understand why their intuitions are appropriate in

some tasks but not others, it is useful to compare Oden's task situation with

the typical Bayesian task situation.

In Oden's task, the stimulus features seem to have a bipolar character.

For example, presence of a moderately sized middle F-bar in a particular stimulus

seems to be simultaneously evidence for F-ness and evidence against T-ness.

Psychologically speaking, we might suppose that such features are on a bipolar

scale than runs from positive to negative. In contrast, stimuli in Bayesian

tasks often do not have this bipolar character. For example, suppose that the

two hypotheses under test involve whether the rejection rate for a machine is

10 parts per 1000 (HIO/1000) or 20 parts per 1000 (1120/1000). A sample with an

estimated rate of 16 parts per thousand intuitively favors H20/1000 at least

slightly. However, it does not seem particularly to deny the possibility of

HIO/1000. Thus, Bayesian stimuli seem to lie on a unipolar scale that runs from

zero to positive.

Whether or not a subject evaluates stimuli on a bipolar or unipolar scale

seems, intuitively, to be an important determinant of whether or not directional

errors occur in adjustment. If, for example, a subject has coded a moderately-

sized F-bar as "F-like and not T-like," it seems unlikely that the subject would

ever adjust toward T-ness. On the other hand, if such a mid-range value were

to be coded relative to a neutral point, as appears to be the case when subjects
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judge mid-range samples in the Bayesian task to be "a 1 ittle bit on the

H20/lO00 side of neutral", adjustment might easily be toward the middle or

neutral range of the response scale, as would b required for averaging.

The issue of order of processing in the two tasks also seems to be quite

different. In Oden's task, one seems automiatically to pick out the more

diagnostic feature. Hence it would be natural to use it as an anclhor and

adjust for the weaker feature. For example, the stimulus

would be described by most people as a T with a blot on the vertical bar,

suggesting that the full length left T-bar is more important or salient than the

small middle F-bar. In judging the relative T-ness of the stimulus, they would

consequently anchor on the value given by the T-bar and adjust for the value given

by the F-bar. Bayesian stimuli, in contrast, are typically perceptually un-

differentiated, as for example, in the stimulus pair below:

14 rejects

11 rejects

Although the second of the two samples is more diagnostic (given the hypotheses

described obove), the eye is not drawn to it and there is little reason to suppose

that a naive subject would have any particular tendency to consider it more impor-

tant or to process it first. Thus, Oden's task may tend to predispose people to

process the stimulus components in an order that would facilitate the differential

weighting necessary for a relative ratio rule. In contrast, the typical Bayesian

task would tend to predispose people to process the stimuli in an order more

amenable to constant weighted averaging.

Finally, a third factor that may differentiate between Oden's task and the

typical Bayesian task may be that, for naive subjects, the respcnse scale in

Bayesian tasks is often confusable with an estimation scale. As is evident in

the literature (Beach, Wise, & Barclay, 1970; Marks & Clarkson, 1972, 1973;

Shanteau, 1970, 1972), judgments in Bayesian tasks are not only more often like

averages than like relative ratios, they are also more like averages of estimates

than they are like averages of inferences. For example, in Lopes (1981), it

appeared that subjects in a serial-presentation version of the machine task simply
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treated the response scale as running linearly from 1() rejects (on the luft)

to 20 rejects (on the right) rather than from p(1120/lO00) = 0 to p(112 0 /1 0 0 0 )

I. In particular, their anchor judgments were proportional to the nu,')er

of rejects in the anchor sample rather than being numerically at all like the

normatively expected inferences.

Multiplying

There are several good examples of tasks in which naive subjects produce

judgments that look as if they had been generated by multiplying. Prominent among

these are the risky decision task in which subjects judge the worth of gambles

(Anderson & Shanteau, 1970; Shanteau, 1974; Tverbky, 1967) and the joint proba-

bility task in which subjects judge the likelihood of joint events (Beach &

Peterson, 1966; Lopes, 1976; Shuford, 1959).

Figure 5 gives some data from a joint probability task in which experienced

poker players were asked to judge the likelihood that they could beat pairs of

opposing stud poker hands with a pair of sevens. The stimulus pairs were composed

using an 11 x 3 factorial design in which the levels of the two factors were poker

hands, each described by four up-cards, a bet amount, and the playing style of the

opponent. For present purposes there is no need to get into the particular coding

used to describe the hands. Suffice it to say that the hands listed along the

abscissa from left to right have decreasing probability of beating a pair of seve,.

as do the row hands listed from bottom to top.

The experiment for which data are shown contrasted two di':. r nt res," !..e

modes, a rating response in the top panel and a betting response in the bottom

panel. As can be seen, the data from both conditions show the characteriscic

"fan shape" of a multiplicative process (cf. Anderson. 1981, Section 1.4). This

result suggests that poker players consider the likelihood of beating a pair of

opposing hands to be proportional to the product of the likelihoods of beating the

single hands.

The question of interest for present purposes is how these data were generated.

Although poker players are generally more familiar with probabilistic notions

than nongamblers, there did not appear to be any indication that they were assign-

ing probabilities to the hands and multiplying them. Instead, they appeared to

be using an analog serial fractionation strategy that is mathematically equivalent

to multiplying (Lopes, 1976; Lopes & Ekberg, 1980).

In serial fractionation, the judge is assumed to anchor the judgment at the
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value of .,ne st imultus and then adjust this value downward (i.e., towa;rd zero tin

the scale) directlv in proportion to the value of another stimulus. If there

are more than two -timuli to be integrated, this proportional fractionation

operation is repeated until all stimuli have been processed. Thus, serial frac-

tionation is simply a special case of anchoring and adiustment in which the

adjustments are always downward and always in proportion to the value of the

stimulus heing integrated.

As it happened, subjects' use of the serial fractionation strategy was

directly observable in the bet condition of the poker experiment described above.

The experiment was run manually without computer assistance. In the task the

subjects were required to bet between I and 30 cents that they could beat each

pair of opposing hands. The hands were printed separately on 4 x 6 cards and

were displayed simultaneously on wooden stands that were located side by side in

front of the subject. Between the subject and the stands was a long strip of

paper divided into 30 segments and numbered from 1 on the left to 30 on the right.

The subject was to indicate his bet by sliding a response marker (i.e., a poker

chip) into the segment labeled with his intended bet amount.

A common response pattern for subjects was the following. First, they looked

at one of the two stimulus hands. (Since these were printed on fairly large

cards, it was possible to know simply from head movements where subjects were

looking.) Then they located a position on the betting scale for this first hand

using the response marker. Next they looked at the second stimulus hand. And

last they moved the response marker downward from its initial position to a final

pos it ion.

Note that this response pattern appears to be an overt instantiation of serial

fractionation. If it were being done on a probability rating scale, the result

would be a normatively appropriate response computed without either numerical pro-

cesses or the necessity of prior knowledge of the normative rule for joint proba-

bility. On a bet scale, the response is nonoptimal in the sense that it constitutes

a form of matching rather than maximizing. However, the response may be sensible

from other perspectives as, e.g., in reducing the variance of outcomes.

Given subjects' clear use of the response scale in generating tleir bets,

a natural question arises concerning whether the process can occur in tasks for

which there is no scale to be fractionated physically. There is evidence that

the answer is yes. Although most of the studies that have obtained multiplicative

data have used physical rating scales, there are some that have not. For example,
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in another vvrs ion of the poker task uinder discussion, subjects typed their bet

amounts into a computer console numerically and still produced multiplicative

data (Lopes, 1976, Experiment 3). Similarly, Slavic and Lichitenstein (1968,

reported in Shanteau, 1975) got multiplicative data using a verbal bidding response.

Joint probahil ity tasks such as the poker task are a special case for serial

fractionation in the sense that either stimulus can be u, ed as the anchor. The

risky decision task differs from this in that the two parts of a gamble (~.

1/6 to win $13) lie on psychologically different scales: the prize or amount to

be won or lost lies on the value scale whereas the probability information lies

on a probability scale. This differentiation in the informational content of the

stimulus items has important consequences for the order in which the items are

likely to be processed.

As Lichtenstein and Slovic (1971) noted some time ago, subjects in risky

decision tasks tend to use the amount (or prize) to be wcn as an anchor and then

adjust this to account for the probability of winning. This value/probability

ordering makes good intuitive sense for serial fractionation since the task is to

integrate value and probability information in such a way that the final response

lies on the same value dimension as the amount to he won.

For illustration, consider the data in the upper panel of Figure 6. In this

experiment Shanteau (1974) asked subjects to rate the worth of verbal bets

described by phrases like "somewhat unlikely to win sandals." Ile used a continuous

response scale that ran from "worthless" at the left to "sure thing to win

television" at the right. Now consider how a subject might operate on this scale

to judge the worth of, e.g., "fairly likely to win watch." The most obvious pro-

cedure would seem to be to use "watch" as the anchor and locate its value relative

to the end-marker, i.e., the television. This operation would yield a quantity

on the value scale that could then be fractionated proportionately in accord with

"fairly likely to win." The result would be another quantity that is still on the

value scale. More concretely, if we assume that, e.g., for a given subject a

watch is about 40% as valuable as a television and "fairly likely to win" is about

80% of certainty, then the serial fractionation process would take the form

schematized in the lower panel of Figure 6.

It is important to note that this order of processing is not a mathematical

necessity. One could fractionate the response scale first proportionally to the

probability information and then proportionally to the relative worth of the

amount to be won. llowever, such a probability/value ordering seems unnatural at

best. Not only would such an ordering contradict Lichtenstein and Slavic's (1971)~
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observation that subjects anchor on the amount to he won in j udgment tasks, but

it would contradict, as well, the finding of Lopes and Ekberg (1980) that value

information appears to be processed before probability information when subjects

have to choose between gambles and sure things.

Serial fractionation tasks are special in the sense that all adjustments in

the process should be downward, toward the zero point on the scale. There are,

however, other potentially nultiplicative tasks that involve more general. scalar-

like processes in which adjustments are not constrained to be downward. For

example, Anderson and Butzin (1974) gave subjects information about the motivation

and ability of athletes and asked them to predict their peiformance in a co tege

track tryout. They found a multiplicative relationship between motivation and

ability. Graosser and Anderson (1974) found a similar relationship

between income and generosity when subjects were asked to predict how large a gift

a person would give to a worthy cause.

In scalar tasks such as these it is possible that subjects anchor their judg-

ment on an estimate given by one of the quantities and then adjust this according

to the other quantity. For example, it would seen reasonable to anchor at the

value given by ability in Anderson and Butzin's task or at the value given by in-

come in Graesser and Anderson's task since these quantities lie on the scale of

judgment. Adjustment could then be made for motivation and generosity, respectively.

There are, however, some difficulties in imagining how scalar multiplication would

work for upward adjustments. One possibility would he to fractionate out a

portion of the anchor quantity and then add this on so that thle final quantity

would be, e.g., one-and-a-half times the original. In cases, however, where the

incrementing is by whole Integers, e.g., increasing a quantity by three, it is

not particularly intuitive to me that this is done by successive additions of the

anchor quantity.

A question that has arisen especially with respect to multiplicative models

is whether human judgment processes display the sorts of consistency and reversi-

bility that characterize formal algebra. In particular, there has been consider-

able interest in determining whether subjects have dividing-like processes that

they can apply when asked for inverse judgments. For example, if '

Performance = Motivation x Ability, (12)

mathematical algebra would require inferences about ability given motivation and

performance to follow the rule
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Ability = Performance/Motivation. (13)

Do people's intuitions about the algebra of real world situations agree with

this rule? Put in terms of processes the question becomes not only whether sub-

jects have a procedure that is equivalent to analog division, but also whether

they have a complete, appropriate, and reversible mapping between the elements

and the operators in their judgment system (i.e., values, adjustments, etc.) and

the objects and operators of real world task domains (i.e., people giving money

to charity or trying out for track meets).

Anderson and Butzin (1974), Craesser and Anderson (1974) and Surber (1980)

have all investigated this question. The general conclusion seems to be that

natural judgment processes do not display the sorts of consistency and reversi-

bility that characterize formal mathematics. For example, in the Graesser and

Anderson experiment, subjects appeared to combine income and generosity multi-

plicatively to produce judgments of expected gift size. Whnen judging income from

gift size and generosity, however, or generosity from gift size and income, they

appeared to follow some sort of subtracting rule. Thus, the human judgment system

appears to comprise a set of judgmental heuristics that often correspond to

simple arithmetical operations but that tend to be both nonreversible and logically

unrelated.

Adjustment Procedures and Judgmental Phenomena

Research on algebraic judgment models has two different aspects. One is

the investigation and description of classes of integration rules, such as the

averaging, relative ratio, and multiplying rules just discussed. The other is

the specification of the conditions under which certain more general judgmental

phenomena occur. Some of these phenomena represent classic topics in judgment,

such as primacy/recency, contrast, assimilation, and halo effects. Other pheno-

mena, however, have come to light only as a result of the power afforded by the

algebraic analysis. These more recently described phenomena include initial

impression effects, differential weighting, subadditivity, and nonadditivity.

In this section I will show how four of these phenomena (primacy/recency,

initial impression effects, differential weighting, and nonadditivity) cam be

understood in terms of the procedural model. Sinco most of the work on these

phenomena has been in the context of averaging, I will not consider the other

models further.
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Primacy/ Rt,',-ncy

One of the earliest findings in impression formation research was a tendency

toward primacy: The earlier the position of an adjective in a trait list, the

greater its effect on the judgment. Algebraically, primacy effects consist of a

tendency for the weight of the adjectives to be a monotonically decreasing func-

tion of serial position.

Several different theoretical interpretations have been offered for primacy

including inconsistency discounting, attention decrement, and a generalized form

of assimilation-to-expectancy termed directed impression (see Anderson, 1981,

section 3.3 for a complete historical summary of this literature). These inter-

pretations were tested in a variety of ways, with the end result being that most

studies favored the attention decrement hypothesis.

One of the experimental manipulations that proved to be important conceptually

involved modifying the impression formation task in a way that forced subjects to

attend to information later in the list. Two effective procedures were to present

stimuli serially and have subjects either read all the stimulus items aloud

(Anderson, 1968 ) or make a cumulative response after each stimulus item (Stewart,

1965). Under these conditions, primacy was replaced by recency, thus confirming

the attention decrement hypothesis.

Two procedural questions of considerable interest are (a) what processes

mediate attention decrement under conditions of ordinary simultaneous presertation,

and (b) what operations produce recency in the case of cumulative responding and

other attention-demanding conditions? For the primacy results, the best answer

seems to be one advanced by Anderson (1981, p. 191), namely, that there is an in-

creasing tendency during judgment for the impression being constructed to crystal-

lize and become resistant to change.

In terms of adjustment processes, the crystallization hypothesis suggests that

as a direct function of the cumulative amount of information already processed,

the serial adjustment constants become systematically smaller than the i/n required

for arithmetic averaging. This seems perfectly reasonable. In add4 tion, the pro-

cedural theory schematized in Figure 1 suggests another source of primacy, namely,

that subjects might partially or totally ignore later items in a list if they seem

relatively unimportant. One way this could work would be for subjects having a

moderately well-crystallized Impression merely to scan later items. If the scan

does not reveal. any item or items that would be likely to produce a large change

in the impression, the subject might then choose not t( adjust the impression
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further. Such a process would not only be computat ionally eff icient , it would

also capture procedurally the important insight that averages generally become

more and more resistant to change as more and more information is included in them.

For recency effects, the situation is somewhat different. To see how, con-

sider once again the number averaging task. Suppose that a subject is given a list

of 20 two-digit integers one at a time and asked to give a running average. As

noted previously, the adjustment constants in such a task would, ideally, begin

with 1/2 and then decrease to 1/3, 1/4, etc. out to the final value of 1/20. A

few minutes play with such a running average should convince the reader that the

adjustments in such a task typically become very small very quickly.

Now consider the position of a subject in such a task who is required to

respond after each stimulus. Sooner or later the subject will reach a psychological

"grain size" for adjustments beyond which he will not go; in other words, at some

point the subject will begin producing adjustments of relatively constant size that

track the direction in which the current adjustment should be made but that greatly

over-adjust in terms of magnitude. This, by itself, would produce recency. Indeed,

it is difficult to see how a cumulative response requirement cculd fail to yroduce

recency in tasks involving more than a few stimuli. For the condition in which

stimuli are merely pronounced by the subject but not tracked overtly, the "grain

size" problem might not hold, in which case recency might reflect some other sort

of attentional effect. However, it is at least plausible that the pronouncing

condition does cause subjects to produce a cognitively discriminable internal re-

sponse for each stimulus item, in which case the final result would he essentially

identical to that for overt cumulative responding.

Initial Impression Effects

One of the early controversies in the history of impression formation research

concerned whether personality impressions follow an adding or an averaging rule.

Although there were several impressive results arguing for averaging, some re-

searchers pointed to a common set-size effect as proof of adding (see Anderson,

1981, Section 2, for a summary).

Basically, the set-size effect was that when subjects were given n adjectives

of identical value and were asked to rate their impressions, the impressions grew

more extreme as a function of n. For example, if all the adjectives were positive,

the response would be higher for three adjectives than for two. Obviously

if subjects were simply averaging the scale values, the result would not: differ for

different numbers of adjectives.
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As it turned out, the averaging model was able to handle such set-size effects

with the assumption that the subject begins each judgment with a neutral initial

impression that receives some sma]1, but not zero, weight in the averaging process.

As successive adjectives are then integrated, the cumulative weight of the adjec-

tives increases relative to the weight of the initial impression with the result

that the response becomes more extreme.

A considerable literature now exists supporting the initial impression con-

struct. However, there are some tasks in which there are no initial impression

effects (e.g., number averaging, psychophysical averaging, most tasks in Bayesian

inference), so the question may be raised as to when initial impression effects

are to be expected and when they are not.

The answer may reflect the subject's understanding of the judgment dimension.

In the case of impression formation, for example, the subject is asked to rate the

overall likeableness of a person given specific information about traits. It

seems self-evident that subjects would recognize that no single trait conveys all

the relevant information concerning a person's likeableness. Thus, the tendency

for people to anchor at a value somewhat less extreme than the scale value of the

anchor stimulus may represent a procedural means for expressing the uncertainty

surrounding all the important dimensions not yet described. For tasks such as

number averaging, however, the judgment dimension is unidimensional so that there

is no apparent need to "hedge" in the anchoring process: the anchor is simply

set at the value of the first stimulus processed.

A question of some interest for the procedural model is whether initial

impression effects tare mediated by pre-judgmental implicit anchoring at the initial

impression with subsequent adjustment toward the first-processed stimulus item or

whether they are mediated by explicit anchoring at the scale value of the first-

processed stimulus item with subsequent adjustment toward neutral. (Note that the

latter process would be conceptually similar to "discounting" the anchor stimulus.)

One piece of evidence that bears on this question comes from a controversial

experiment (Shanteau, 1975) that tested the averaging hypothesis for inference

judgment. In Bayesian inference, nondiagnostic (i.e., neutral) information should

have no weight whatsoever in the judgment process. Shanteau used tLis fact in a

clever experiment to get a qualitative test of his averaging model for inference.

lie presented subjects with various sequences of sample information and asked them

for cumulative inferences, lie found that subjects tended to adjust their inferences

toward neutral after the presentation of nondiagnostic samples. This would be
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expect of an averaging rule.

Wa IIsten (ll76za) objected to Shanteau ' ; aialysais by po int ing out that th,

averaging model only accounted for the data when the nondiagnostic information

followed one or more pieces of diagnostic info rmation. When the nondiagnostic

sample was given first, it appeared to have no weight at all in the. judgment.

Specifically, the cumulative response to a two-item series in which a nondidl -os-

tic sample preceded a sample of given diagnosticity was essentially identical to

the response to a one-item series consisting only of the diagnostic sample. This

result is in accord with Bayes' theorem and not with an averaging rule.

These data suggest a tendency for people to resist anchoring at a neutral

value even when the potential anchor stimulus is an explicitly presented stimulus

item. If this is so, it would suggest that the explicit procedure for initial

impression effects would be more plausible than the implicit procedure since the

latter would require subjects to anchor not only at a neutral value, but at an

implicit neutral value to boot. Obviously, the cast for explicit anchorino, is not

strong, especially as it rests on generalizing a result from a task in which

initial impression effects do not ordinarily occur to a task in which they are

quite common. It seems plausible, in fact, that nondiagnosticity (as exists in

the inference domain) might be treated quite differently than neutrality (as

exists in the trait adjective domain). Since nondiagnosticity is literallv

content-less relative to the issue at hand (i.e., which hypothesis is supported),

it may be relatively easily ignored when it occurs in the first position. In

contrast, neutrality (i.e., that people tend to be averagely likeable) has content

relative to likeableness. Hence, we may bE willing to anchor on it both when it

is presented explicitly and when it merely exists as an initial impression.

Differential weighting

As stated above, the most common form of averaging model is constant weighted

averaging. Ordinarily, averaging models are expressed with reference to designs

in which the various factors represent the serial positions in which stimuli appear

in a temporal series or in a printed list. The equation describing the constant

weighted averaging model for a factorial design would be written,

N
Yw s.,j

R i= i  
14)

RN  (1 4)

N
7, w.

1
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This shows that the factor weights, w., vary only with the factor, i, whereas

the scale values, s i., vary with both the factor and the level, j, within factor.

There are several theoretical and practical factors that make it desirable,

when possible, to set up experiments so that constant weighting will hold. However,

the averaging rule can he written more generally,

N
W. .S.,
ii12 12 15

R N-N (5

w..

to allow weights to vary not only between factors, but within factors as well.

In this form the averaging rule would bE able to capture virtually any psychological

factor that might affect the weight of a stimulus item, e.g., reliability, source

credibility, novelty, extremity, and so forth.

A form of differential weighting that has appeared fairly frequently in the

literature is what has been termed a "negativity effect" (Anderson, 1981, Section

4.4.2). The observation is that stimulus weights seem to increase as a function

of their negativity. In a factorial plot this distorts parallelism by causing a

convergence of the data points for stimuli containing negative items.

For illustration, consider a stimulus set generated by factorial combination

of three sets of adjectives:

Factor 1 Factor 2 Factor 3

careful intelligent friendly
careless gullible cruel

The stimulus combinations that would result would be,

intelligent gullible intelligent gullible
careful careful careless careless
friendly friendly friendly friendly

intelligent gullible intelligent gullible
careful careful careless careless
cruel cruel cruel cruel

For the stimuli in the upper row, there are clear differences in the scale values

of the adjetvs There may also be differi' -s in importance or salience.
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For example, intelligence and friendl iness might be considered more important

than carefulness in judging the likeableness of a person. However, these parti-

cular differences in weight would probably not be great enough to prevent one

from simply integrating the adjectives in order as they appear in the stimulus,

i.e., using the default order. For the stimuli in the bottom row, however, the

situation is different. The adjective "cruel" is both extremely negative and

highly salient. Thus, a common pattern would probably be for subjects to judge

these stimuli by anchoring on "cruel" and adjusting for the other two adjectives.

Now consider the effect that such an ordering difference would have in the

analysis of the factorial design. Ordinarily, the weights of the various adjec-

tives would reflect their serial position in the stimulus so that w3 >w2>w3.

In the present case, however, the adjective "cruel," which by virtue of its serial

position has weight w3 , is pushed to the top of the processing order where it

receives weight wI. In contrast, its factor-mate, "friendly," is processed in

the default order so that it always receives weight w3. Thus, a negativity effect

would occur in which, for example, there would be less difference between the

responses for careful/intelligent/cruel and careless/intelligent/cruel than for

careful/intelligent/friendly and careless/intelligent/friendly. (Note that

ordering effects need not be the only source of increased weighting for salient

adjectives. The possibility of direct weighting effects will be discussed below.)

The algebraic differences between Equation 14 and Equation 15 are very small,

amounting to no more than a restriction on whether the stimuli within an experi-

mental desig.i factor can vary on weight or not. Are the conceptual differences

equally small? In terms of the serial adjustment model, the answer is yes.

Subjects do not "have" a constant weighted averaging process and a differential

weighted averaging process that they apply selectively to different tasks.

Instead, they have a general judgment procedure that functionally produces averages.

Whether those averages show constant weighting or differential weighting is not

primarily the result of what the subject does, but rather reflects how the experi-

menter constructs and analyzes the stimulus design.

This point can be illustrated by consideration of an experirent by Anderson

and Lopes (1974) in which subjects made judgments of the occupational proficiency

of various people (e.g., lawyer and plumber) based on information about their

degree of reliability (average vs. extreme) and their degrees (very, moderately, or

not-very) of competence on skill factors (e.g., persuasiveness and mechanical

ability). In this experiment it was anticipated that the relative weight of the

---------
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Figure 7. Ixample of differential weighting in averaging. From Anderson and

lopes, 1974.
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competence factors would ref lect the importance of those factors to the profession

being judged.

As can be seen in Figure 7, this is basicallv what happened. Taking the case

of persuasiveness, for example, we can see that the slopes of the two curves for

reliability are very steep and very close together when reliability and persuasive-

ness are combined for lawyers. !%'ben they are combined for plumbers, hovever, the

curves are further apart and virtually flat. Both these results reflect the

increased weight assigned to persuasiveness for lawyers. Likewise, the importance

of mechanical ability for plumbers is indicated by the steepness and closeness

of the curves for reliability when reliability and mechanical ability are combined.

How are these effects produced? According to the serial adjustment model

the effects would, at least in part, reflect processing order. (A furtler source

of weighting effects will be discussed below.) For example, if information is

given about a lawyer's persuasiveness and reliability, the judgment would probably

be anchored on the persuasiveness value and adjusted for reliability. Given

primacy, we would, therefore, expect the weight for persuasiveness to be greater

than the weight for reliability. For plumbers, however, the ancaoring would be

on reliability with adjustment (if any occurred at all) for pelsuasiveness. The

result would be greater weight for reliability.

The judgments in this experiment were expected to conform to a constant

weighted averaging rule and, with the exception of a small negativity effect that

will be discussed below, they did so. But consider how the situation would have

differed if the lawyer/plumber designs had been set up as follows:

Reliability Factor Skill Factor

extremely reliable very persuasive
averagely reliable very mechanical

From the subjects' point of view, the stimuli would be identical to some of

those judged in the previous design. Presumably they would process them in the

same way. But from the design point of view, we would say that the subjects were

performing differentially weighted averaging since, for a given profession, the

weights on the two levels of the skill factor would be greatly different. Thus,

psychologically speaking, there is only one averaging process. It reveals itself

in different guises, however, depending on the stimulus design.

A final point should be made about weighting effects that are mediated

directly rather than by order of processing. Consider, again, the data in
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Figure 7. Note that for the four panels in which there is a job-relevant

adjective (egpersuasiveness for lawyers, mech;,nical ahility for plumbers,

etc.) there is a tendency for the curves to converge at the low value of the

adjective. This is, of course, a negativity effect as was described above.

But we might wonder why it occurs in these particular designs since, presumably,

the skill information is being processed first for all three levels due to its

relevance. one answer might be that subjects have, in addition to ordering

procedures, other procedures that modify the magnitude of the adjustment con-

stant depending on the relative importance of the stimulus being integrated.

If this is so, them the adjustments from "not very persuasive" might involve a

smaller adjustment constant than, say, adjustments from "very persuasive."

Such direct weighting procedures seem feasible, in general, and they would be

necessary practically for proper weighting of important information that was

received late in a temporal series. They would also be necessary for proper

weighting of unimportant information occurring in short lists where late order-

ing alone would not be able to give them small enough weight.

Nonaddit ivity

Constant weighted averaging rules and relative ratio rules both display

the mathematical property of ordinal independence. This refers to the fact that

when these rules are used to generate data for factorial combinations of stimulus

values, the rank order of data within rows (and columns) is the same for all

rows (and columns). Multiplying rules can also display ordinal independence when

they are restricted to stimulus values which are all positive, as would be the

case for the kinds of multiplying models discussed in this paper if we disallowed

stimuli of zero value. Ordinal independence does not, however, hold in general

for differentially weighted averaging. Although particv.lar data sets may display
the property, other data sets may show one or more disordinal interactions (i.e.,

crossover interactions).

Ordinal independence is important for present purposes because it provides

a way to test for the presence of averaging processes without relying on the

quantitative properties of the responses. In other words, if violations of

ordinal independence can be found within a data set, then it is possible to con-

clude positively (within the limits of uncertainty imposed by unreliability in

the data) that the rule that produced the data is an averaging process and not

some other additive rule operating with a response transformation that mimics

averaging results.
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Tests of additivity have an important place in testing whether people in

Bayesian inference tasks are relying on processes that are more averaging-like

or more ratio-like. Two .xperiments were run in the present project (Lopes,

1982b) that attempted to manipulate weighting factors in such a way that differen-

tial weighting would be obtained in the machine maintenance task that has been

discussed before. The major change in the new task was to designate samples not

only in terms of the number of rejected parts that they estimated, but also in

terms of the reliability of the estimate.

The results of the experiments were somewhat equivocal. At the group level,

there were no violations of additivity. At the single subject level, however,

there were numerous violations, suggesting that the judgment process was ordinally

distinct from a relative ratio rule. Unfortunately, the forms of nonadditivity

that were obtained included not only the particular type of crossover interaction

that would be expected in differentially weighted averaging, but two other types

of interaction as well. Of these unexpected crossover types, one was fairly

easily accounted for in terms of the direction in which adjustments were made.

The other one, however, did not lend itself to ready explanation, thus leaving

open the possibility that the process might be more complex than heretofore

suspected.

Since nonadditivity is an important topic, it is worthwhile showing how it

occurs in a serial adjustment process. For this purpose, I will use data from

an experiment testing an averaging model for similarity judgment (Lopes & Oden,

1980). In the experiment, subjects were given pairs of kinship terms such as

mother/aunt, grandfather/girl-cousin, brother/sister, and so forth, and were asked

to rate the similarity between the two terms. The model being tested was that

similarity would vary inversely with a weighted average of the stimulus differences

on each of a set of i relevant dimensions or attributes:

N
F W ab diab

Similarity(a,b) = a - N i= a (16)N

i w ab
i=1

In this equation, Wiab are the weights, diab are the differences, and a is a

scaling constant. The dimensions that were actually used in the model analysis

were sex, age, and a lineality dimension termed "immediacy." How immediacy was

decided upon need not concern us here. Suffice it to say that immediacy is an

Bom
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index of closeness of kin as measured from the viewpoint of ego, i.e., the judge

in the task. It runs, from closest kin to most distant kin, as follows: parent,

sibling, granoiirent, auntuncle, great auntuncle, and cousin.

In the experiment, there were several dramatic crossover interactions that

appeared in both the single subject data and the group data. Two of these are

shown in Figure 8. Taking the crossover on the left as an example, notice that

uncles and girl-cousins (U/GC) are considered to be more similar than fathers and

girl cousins (F/GC). This makes intuitive sense: Although both pairs have the

same difference on the sex dimension and on the age dimension, uncles and girl-

cousins are closer on the immediacy dimension than fathers and girl-cousins.

A reversal, however, occurs for greatuncles and girl-cousins versus grandfathers

and girl-cousins. This is apparent when one considers that for these pairs also

the sex differences and age differences are the same, and only the immediacy

difference varies. In this case, however, the pair with the larger immediacy

difference, grandfather and girl-cousin (GF/CC), is seen as more similar than

the pair with the smaller immediacy difference, greatuncle and girl-cousin (GU/GC).

How do unintuitive patterns such as this occur? It is useful to think about

the process in terms of the serial adjustment model. Table 1 gives some reasonable

weights and scale values that might be applicable in the present case. Note that

the weights tend to decrease as a function of the magnitude (or salience) of the

difference. (In the full analysis of the experiment, the weighting function was

actually curvilinear with large weights being assigned both to large differences

and to zero differences as when both terms had the same sex or the same age.

Since in the present example there are no identities, this complication can be

safely ignored.)

Table 2 shows how these weights and scale values would operate in a serial

adjustment process of the sort described algebraically by Equation 4. If one

reads across the columns and then down the rows, the sequential anchoring and

adjustment operations are revealed. For example, for the stimulus pair cU/GC, the

largest dimensional difference is for sex, with a scale value of 95. Thus, the

anchor is set to 95. This is adjusted next by the value for age, which is the next

largest difference (i.e., 90). The adjustment process proceeds by noting the

discrepancy between the old value (95) and the new value (90) and adjusting down-

ward about half-way due to the relatively equal saliences of the two items. The

final adjustment is for the very small immediacy difference (10). Although the

discrepancy between the old value (92.52) and the new value (10) is quite large

_ _ _ _ _ _ _
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Table 1

Hypothetical Weights and Scale Values

for Crossover Interaction

DIMENSION AND SCALE VALUE WEIGHT OF
DIFFERENCE OF DIFFERENCE DIFFERENCE

SEX

male vs. female 95 51.0

ACE

young vs. old 90 50.0

young vs. middle 40 7.5

IMMEDIACY

cousin vs. parent 90 50.0

cousin vs. grandparent 70 40.0

cousin vs. auntuncle 30 5.0

cousin vs. great auntuncle 10 1.0
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(-82.52), the adjustment is very small since this small difference in immediacy

is not very salient compared to the other two differences.

Similar processes occur for the other three values. In every case the

information is processed in order of the magnitude of the dimensional difference

while the magnitude of the adjustment constant (i.e., the weights in Table 1)

reflect the salience of that difference. The result is a set of similarity judg-

ments that violate ordinal independence, thus testifying to the differential

weighting in the process.

Note that in this example, there would have been no mathematical reason to

require the order of processing to proceed according to salience. The non-

additivity comes directly from the differential weighting and, hence, would appear

for any serial instantiation of Equation 4. However, to the degree that people

tend to process information in an order that runs from most important to least

important when they can (i.e., taking first things first), primacy effects would

tend to enhance whatever differential weighting was already present and, hence,

would be expected to encourage nonadditivity.

Epilogue

In this paper, I have attempted to integrate some hypotheses about the

procedures that people use during judgment with the vast literature already

extant on the algebraic properties of judgment data. I have not supposed that

these procedural hypotheses in any way replace or deny the earlier algebraic

work since that work provided the empirical foundation that made it reasonable

to look for the specific psychological operations for computing various sorts

of algebraic results. Instead, I have seen this work as complementing the

algebraic work by suggesting the fine structure of the processes described by

the algebra.

All of the research performed on the project for which this is the final

report concerned the Bayesian inference task. Although no one would doubt that

inference is an important psychological skill, many might judge that the Bayesian

task was played out psychologically long years ago when so much research was

generated on the topic of conservatism. I would hope, however, that the present

research has contributed some new information about the procedures that mediate

tasks.
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The three separate experimental approaches taken to the topic in this re-

search have each contributed differently to the project. The first two experi-

ments were primarily aimed at (and succeeded in) confirming the existence of

the kinds of directional errors of adjustment that would be expected from an

averaging process (Lopes, 1981). The second two experimerts provided a practical

means to test the procedural analysis by seeing whether it could be used to

engineer "better Bayesians" out of naive subjects (Lopes, 1982a). The result

was a clear yes. The last two experiments attempted, but did not entirely

succeed, in demonstrating the qualitative necessity of an averaging formulation

for describing the judgment process (Lopes, 1982b). Although there were data

from some subjects to support the hypothesized nonadditivity, data from other

subjects suggested that the process may be more complicated than supposed,

particularly when stimulus samples differ in reliability.

Of these three subprojects, the one that pleased me the most was the one on

building better Bayesians -- the debiasing project. Perhaps this was merely be-

cause the project succeeded in doing what most other approaches to debiasing

inference have failed at. Everyone loves success. But I think the deeper reason

is that the debiasing effort was accomplished by decomposing the judgment situa-

tion in psychological terms and then communicating to subjects in those same

psychological terms what errors they might produce in their judgments and what

procedures they might use to avoid error. It was reinforcing, indeed, to see

a cognitive anal-sis do what other, more nearly "black box" analyses had failed

to accomplish.

Quantitative judgment is both commonplace and fundamental; it underlies our

most basic thoughts concerning the quantitative relationships among the complex

objects and situations in our social and physical environments. At the present

time a great deal is known about the content and algebraic structure of judgment

data. Little is known, however, about the cognitive mechanisms that generate

such data. I hope the present research will move us a little closer to a proce-

dural understanding of the human judgment system.
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Footnote

iThere were some noradditivities in the Bayesian tasks used in lopes

(1982b) that seemed to require something like an initial impression for proper

interpretation. These, generally, were hypothesized to involve a weaker

anchor value (i.e., nearer neutral) for unreliable samples than for reliable

samples. This would be consistent with an initial impression hypothesis in

which the unreliable samples receive less weight than reliable samples.
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